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Norms on Direct Sums and Tensor Products 

By P. Lancaster and H. K. Farahat 

Abstract. We first consider the construction of a norm on a direct sum of normed linear 
spaces and call a norm absolute if it depends only on the norms of the component spaces. 
Several clharacterizations are given of absolute norms. Absolute norms are then used to 
construct norms on tensor products of normed linear spaces and on tensor products of 
operators on normed linear spaces. 

1. Introduction. In this paper, we consider the construction of norms on 
composite linear spaces formed from direct sums and tensor products of normed 
linear spaces and we consider properties of norms of operators on these spaces. The 
notion of an absolute norm is introduced as a natural generalization of the relatively 
familiar idea of an absolute vector norm on the space Cn of ordered n-tuples of complex 
numbers. Such norms on Cn correspond to the "coordinatewise symmetric" gauge 
functions as described by Ostrowski [3], and it is shown that our absolute norms 
on composite spaces correspond in a one-to-one fashion with the absolute vector 
norms on Cn. 

We are particularly interested in operator norms for which, in an appropriate 
sense to be detailed later, 

IIA XD BIJ == tIAII IBIJ 

where A, B are linear operators on linear spaces and (0 denotes the tensor product 
of linear operators. 

In Sections 2 and 3, we introduce absolute norms on direct sums of normed 
linear spaces and obtain several characterizations of them. In Section 4, we discuss 
norms on tensor products of linear spaces and exploit the "absolute" norm idea. 
In essence, we are looking for a definition of a "natural" norm in a space L which 
is the tensor product of normed linear spaces X and Y. One desirable property is 
that the operator norms induced from those on X, Y and L should have the property 
displayed above which defines a crossnorm (for a vector or operator norm). In Section 
4, we make connections between absolute norms and crossnorms. 

Norms of tensor products of operators are discussed in Section 5 and, in Section 6, 
we illustrate our results with applications to complex matrices. 

2. Absolute Norms. In this paper, all linear spaces are over the complex 
numbers C. We frequently need to consider the supremum of sets of real numbers 
formed from quotients. In such cases, it is tacitly assumed that the supremum is 
restricted to a set for which the denominator is nonzero. 

Let Xl, X2, , Xn be normed linear spaces and let X denote the direct sum 
X = X1 X2? = X. Xj If x, y C X and x = (xI, x2, , xJ), 
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Y = (Yl, Y2, y, Y) we say that a norm on X is absolute if llxJll = lyJill, 
j = 1, 2, * , n, implies IjxIj = IlYI. 

A norm on X is monotonic if IIxiJJ < JyJI 1, j = 1, 2, * , n, implies IXII < IjyjI. 
Our first results generalize theorems of Bauer, Stoer, and Witzgall [1], which 

may be interpreted as the special cases of our results in which the given normed 
linear spaces are one-dimensional. 

THEOREM 1. A norm on X is absolute iff it is monotonic. 
Proof. Suppose first that the norm is monotonic. Then I lxiii = I y, JJ1, 

j = 1, 2, , n, implies IlxII IlylI and IlylI < |lx|I, whence IlxII = JIly and the 
norm is absolute. 

Conversely, if the norm is absolute, we have 

I 1(O X2, . 
* Xn) I I I 2' (Xl, X2, * Xn) + 2 (_ XI, X2, , Xn)I 

(1) 2- I I (xI -, x.) I| + 2 II(-XI, X2, , Xn)fl 

= II(X1, x2, * , xn)lII 

Now, suppose that X = ixll 1/ljjxfl < 1. Then, 

I I(X1, x2, * * * xn)( II = II (XX, X2, , Xn)I I 

= I IX(X1 , X2, * Xn) + (1 - O)(O, X2 Xn)I 

< X II(X8x, x29 * Xn)II + (1 - X)II (O, X2, Xn)II 

< X I H(X ,x2, , Xn)l I + (1 - X) I I((X X2' Xn) 

using inequality (1). It follows that iixlll < llxlll implies 

||(X1ls X2 ,** Xn) I I -< |I| (XIl,X2, *** XJ)I I - 

Since a similar argument applies to each position of x, it follows that the norm on X 
is monotonic. Ol 

Suppose that, for j = 1, 2, , n, Ai is a linear operator on Xi. Then, a linear 
operator A = A1 Anon X = Ei ) Xi is defined by 

(A1 ? A2 ( *-- ) An)(xI, x2, . * . xn) = (Alxl, A2x2, AnXn) 

for all xi E Xi, j = 1, 2, * , n. We consider now the so-called "bound" norm for 
operators; that is, the norm induced by the norm of the space on which the operator 
acts. Thus, IJAII = sup IlAxll/llxll. 

With the above notations, we say that a norm on X = 2j (B Xi has the maximum 
property if, for any linear operator A = >3 [ Ai, we have jIAjI = maxi IJAJll. 
We are going to show that the norm on X is absolute iff the induced operator norm 
has the maximum property. 

LEMMA. Let X be a normed linear space and x, x' E X with I Ix l I I x'l l. Then, 
there exists a linear operator A on X such that Ax = x' and IIAII = 1. 

Proof. Let X* be the space of continuous linear functionals on X with the 
usual norm. We shall call X* the dual of X. It is well-known (Dunford and Schwartz 
[2] 11.3.14) that, given a nonizero x C X, there is an x* E X* for which x*x = IlxI 
and II = 1. We define the linear operator A on X by 

Ay = (x*(y)/|Ixll)x' 
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for all y C9 X. Then, we obviously have Ax = x' and, since Ixi I = Ilx'li, 

IjAII=U sup = _up IIX* 1 IIYII = sup- ( = IIX*II = 1 

In the case lxii Iix'li = 0, we simply choose A = I. 0 
THEOREM 2. A norm on X is absolute iff it has the maximum property. 
Proof. Suppose first that the norm on X has the maximum property and let 

x, y E X with l ixi I i = I jyj I i, j = 1, 2, * * - , n. We are to prove I Ix| I = I IyI 1. By the 
lemma, there exist linear operators Ai on Xi such that A,x, - y, and IlAill = 1 
for each j. Then, using the maximum property, 

I l(YI s Y2, * ,YJ) I = I i(AlxI , A2X2, *- -, AnXn)l Il 

= I I(Al 0+** A,t)(xi X2, *-*sXn)| 

I Ii(xl, X2, , xJ)I max 1lAill =I i(xI, X2, , x.)jI. 

Thus, iiyIlI I< lxii. However, reversing the roles of x and y we can also prove 

|lx|i < IIYII and, hence, |lxii = iIyIl. 
Conversely, suppose it given that the norm on X is absolute and let A = E> Q Ai 

be a direct sum of linear operators on the spaces Xi. If ,u = maxi IIAill, we are to 
prove that IIAII = -. Now, for each j = 1, 2, n.* , 

ilAixill :!< ||Ajll lixill -< A |X| =lil Il|8Xi 

and, since an absolute norm is monotonic, 

IIAxlI = Ii(Alxl, *- , A,.x)|II < II(Gux, ., uxJl = A - ilxll. 

It follows immediately that I IAI < ,u. 
To prove the reverse inequality, we have, for x1 E Xl, xi # 0, 

hAIIl I IA(x,, 0, ,0)lI _ Il(A,x,, 0, 0)I I 
I 11(X1, ?, , ?)11I 1(xl ?, *-- ?)11I 

If ,i(x1) = iIAixil/l ixill, then iiA1x1iI = Ihhi(xi)xlll and, since the norm is absolute, 

hIAIl > II(,.(xl)xl, 0, ,- 0 ?)ll/Il(xi, 0, , 0)11 = A(xj). 

Taking the supremum over all nonzero x1 i X1, we have I I > II A1 I1. In a similar 
way, we obtain hJAll _ hlAill, j = 1, 2, . , n, and we have hAIIl ? ,. El 

3. Connection with Norms on Ci,. If C denotes the linear space of the complex 
numbers with the absolute value norm, we write Cn = C G C (3 * @ C (n times). 
Then, a norm on C,, is absolute if it is a function of the absolute values of the com- 
ponents of the members of Cn. Suppose once more that X1, * , X, are normed 
linear spaces and that we have an absolute norm on X = >3 ? Xi. Define a function 
h on Cn by 

(2) h(1,, , * * hh(Xl , X2, , * * 19 

where , , i e Cn, xi E Xi, and hixi I = Iij, I = 1, 2, , n. If ui E X 
and iluil = 1, then l1jujjlj = I and we may write 

(3) h(1,, 02 * ) = |(u,l , t2U2, * nUn) 
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THEOREM 3. (a) Every absolute norm I I || on X defines, by (2), an absolute norm 
h on C,,,. (b) Conversely, every absolute norm h on C, defines, by (2) again, an absolute 
norm II - on X. 

Proof. (a) Using formula (3), we have 

(i) h(Q,2, , i2 ) = O 1 z Ul f * * nUn)lI - O== jiu = O= =j = 0 
for] = 1, 2, , n. 

(ii) h(Xij, X\2, , X* ) - 1(XUl, ' *, Un) 

- IX Q1(tu, U *, nun)j = |)|X h(i1, '2, * 

h ((Q ' * * j ) + (hn, , * a)) =h(i + 7 , * n + 27) 

I |l((Q1 + 77)U1 I * (,n + 27.)un) I 
11i | I(01U1, , * * nUJ) + (q71U1, , * * , 77.U.)II 

< I JQ(u1, 0u, 1) IjI + I j(qUl, , * * * 7 I 
= h(Q1, - , ) + h(271, , n). 

This shows that h is a norm on C, and it is clearly absolute. 
(b) Now, suppose it given that h is an absolute norm on C, and define a function 

on X by means of (2). Then, if llu;ll = 1, for j 1, 2, , n, it follows that 

I i(x , xI)| = Xn I iuI I , t I I 
where lj = 1x11!, j = 1, 2, , n. Then, we have 

(i) Il(xi, * * * x,)l 0 =X h(1, . * * , ) = ? and ItiI = lxifI 
= j = 0 Xi = 0. 

(ii) IX(x,, . * , x,n)fI = H(1 X,xl - Xxn)f( = h((Xf 41, ,X( *) 

JX= h(Q1, * * , tn) = lX I I(xI Xn* , I I 

I |(x*** Xn) + (YI, * , Yn)J II (xI + Y, , , Xn + Y.)H | 

(iii) - h(lIx1 + y, II, I lXn + Y.jI) 

< h(Ifxfll + IIYJI, ,llXnll + HIYn|f), 

using the fact that an absolute norm is monotonic. Thus, 

I(x ( *, Xn) + (y1, y* I * )I ? h((IIxilx, I I l,Xn I) + (IIY1I1, I lYnI 1)) 
< h(l Ix,l I - 1, IlXnl 1) + h(|l ly, I - 1, I lYnl 1) 

= 
I |(XI, ***,XJ)l I + I 01(St Yn)|I 

- 

This completes the proof. O 
There is a close analogy between the result of this theorem and Theorem 5.2 

of Schatten [4], in which he identifies unitarily invariant crossnorms on a Hilbert 
space with symmetric gauge functions. In our next result, we show that the cor- 
respondence obtained in Theorem 3 extends to the norms on the dual spaces of X 
and C,. First, we recall that, for any normed linear spaces X, X2, * *, X,, the algebraic 
isomorphism between 
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X* = (XI (? X2 3* X)* and X*( X*2 *? X* 

allows us to identify these two spaces. Thus, if z* E X*, we identify z* 
with (x*, * , x*) and we have z*(x1, * , xn) = >3 x*.xi. We first need a lemma 
which parallels Theorem 1 of Bauer, Stoer and Witzgall [1]. 

LEMMA. If C, has an absolute norm h, then the induced norm h* on C* is also 
absolute. 

Proof. As above, we identify C* = (C ( * **(3f C)* with C* D ... E3D C* and 
note that each element of C* is a multiplication by a complex number with the 
absolute value of this number as norm. 

Let (*, * *, *E C* .. *. * C* and let t*k be multiplication by the complex 
nLtmber a, exp(i6j) where ao > 0. Then, taking a supremum over the set S of vectors 

(Q1 * ,n e C,, with unit norm, 

h*(Q*, , t*) = sup IQ(01) + + M(WI 

= sup Iai|i exp(i01) + *** + a,n,n exp(iO,,)I 

Let -q, =j exp(iOj) so that h(717, ... , 7,) = h(1, *, in) (since the norm on Cn is 
absolute) and take the supremum now over vectors (77, * , 7mn) e S (obviously the 
whole of S): 

h*(Q*l, su , *) - SUp Jain,i + * + a,n,tln - h*(i1j, * J , 

where &j is multiplication (of C) by ai. Thus, 

h*Q*l, * * * , t*n) = h*(|| ll,* *, llnl) [ 

THEOREM 4. Given an absolute norm on X (== >3i 6 Xi), let the associated 
norm on C7, (as in the lemma) be h. Then, the norm on X* is absolute and is associated 
with the nornm h* on C*. That is, if (x*, X*. ,) E X*, I(x7* , X*)II I 
h*(Tr*, Xr ,n), where r, C C* and IIrjII = jx*Ij. 

Proof. Let ui E Xi with IluJ I 1, j = 1, 2, *., n. These vectors determine 
a linear operator 0 : Cn -* X by means of 0( , , in) = (lUl, * * * , nUn) which 
(by (3)) is norm-preserving. Hence, 0 has unit norm. Now, the composition 
(x* , x*)6 is a linear operator from C,, to C, so we have 

(4) h*((x*, , x*)6) I II(x* *' * , x 
I)II 

11611 = I I(x* , x*)II 
and, taking the following supremum over elements (Q,, * *, in) C C,n of unit h-norm, 

h*((x*,. , x*)6) - sup E X'QjjU) = sup | ix'j(Ui) 

- 
h*(x*(uj), X * *, x*(Un) ), 

where x'k(ui) is the linear functional corresponding to multiplication of C by x'f(uj). 
Thus, from (4), we have 

Il(x** X - I* X 8x(l *ns x(Un) ) 

whenever IIu jI = 1, j = 1, 2, , n, and, hence, 

(4a) 1 i(x*, * *I *( , x*)I I > s, 

where s = supl,,,,,,= h*(lx*(u,)I , * Ix*(uj)K) and we have used the fact that h* 
is absolute. It follows from the definition of x1x*11 that, given e > 0, there exists 
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(for each j) a v, C Xi such that I lvii I= I and Ixk(vj)l > lIlx Il - E. Using the mono- 
tonic property of h*, we therefore have 

h*(IIx*ll, Ix, IIx'IlI ) < h*((x*(vl) + E), , 
(x*(v.) 

+ e)) 

< h*(Ix*(vi) Ix*(vn)l ) + h*(e , *.., ) 

Thus, 

h*(IJx* I I *I, lIX* I I s + h*(c- c-, 

and since the continuity of h* implies that the last term can be made arbitrarily 
small, we have s 2 h*(Ix*Ill , Ix*, llll), and we obtain from (4a) 

(5) il(x*, * * *, x*)II _ h*(IIx*II, * * Ix*II ) 

On the other hand, taking the following supremum over nonzero (x1, * , xn) E X 
and noting that I l(x1, x.* , = h(|1xl |1, * I lxnl |), 

I I (X*1 *@ * n,x )l II su -- I I( su )I I -x 
in I I( . sX)|I (6) Ill(xI , XJI 

= ll(xi, , 
nI 

= sup i ll < 
h*(Ilxll* IIX*nI1 

a j; 0 h(al, , * * aCn) 
= 

Combining this with (5), the theorem is proved. El 
COROLLARY 1. (a) For any element (x*, , x*) E X*, 

* sup I I(X**** Xn) = SjUo h(atl, a n) 

where h is the norm on C. associated with the norm on X. 
(b) For any (xi, - * - , x.) E X, 

I((x1, ,xn)lI = sup h al I I 
a~~ h*> (ali, ., an,) 

where h* is the norm on C* associated with the norm on X*. 
Proof. (a) In the last steps of the proof of the theorem, we have equality at 

each stage and so the first result follows from (6). 
(b) There is a norm-preserving isomorphism 4 of X onto a subset Z of 

the second dual X** (cf. Dunford and Schwartz [2] 11.3.19) and, as above, we may 
identify X** with >; E X*i*. Thus, to each z = (x,, *.. , x,) C X corresponds 
2 = z- (z) C X** and, for all x* C X*, 2(x*) = x*(z) or, 

X,, * 
iD)X1s' * * X*n) = (X 1s*,** X V)Xi Xn) . 

Applying (a) to evaluate 11211 we have 

IzIl =11 = =JI 
su Eai xj~j 

l l l l l , akO h*(al, * , an) 

However, if 4i is the norm-preserving isomorphism of Xi onto Si C Xi**, then 4 
may be defined by 

0(X1, * , Xn) = (4,,x,, * 4,,,Xn) = Q1* XJ) 
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Thus, if we identify z with 2, we may also identify xi with Xj for j = 1, 2, ... , 
and we obtain 

IlzIl = sup a~IIlx~II 
asik0 h*(al, * * , a.n) 

In the next corollary, we present another characterization of absolute norms 
in terms of a generalized Holder inequality. 

COROLLARY 2. A norm on X is absolute iff 

(7) E ixil i *i l -I'~1< ilzll IIZ*II 

for all z = (xl, X^ xn) E X, z* = (x*, **,x* ) E X* . 
Proof. For any norm on X, let z = (xl, , xj) & X and suppose that, under 

the natural embeddings, z -> z E X** and xi -; E& Xt * for j = 1, 2, 9 * n. Then, 

|iil = A ||j(a) < SUi Et~tt nIxi = S Z I; II I ,II I I~~Izt ItzI 

However, the generalized Holder inequality (7) implies IlIzIl E (lix*jl i1xili/liz* 1) 
for each nonzero z* E X* and so 

llzil = sup E IIxII IIxiII 
a. IIz*II 

and we see at once that the norm on X is absolute. 
Conversely, if we are given an absolute norm on X, then part (b) of Corollary 1 

and Theorem 3 give 

tizit = IxO h*(l .. i ) Z* I2Z* I 

and the inequality (7) follows. 

4. Norms on Tensor Products. We now confine our attention to finite-dimen- 
sional normed linear spaces X and Y and consider the construction of norms on the 
tensor product X (0 Y. If E = {e,, e2, *.. , em} and F = {f1, f , m fn} are bases 
for X, Y, respectively, then {e, () fk: 1 ? j < m, 1 < k < n} is a basis for X 0 Y. 
Furthermore, every element z of X 0 Y has a unique representation in the form 
z = > e (0) yi where yi, y.., E Y and, similarly, in the form z = xk 0 @ fk. 
An element of X 0 Y is decomposable if it is expressible in the form x (0 y where 
x E X, y & Y. By means of the isomorphism X 0 x A-. Xx, we shall subsequently 
identify C (0 X with X. 

If a norm on X 0 Y has the property I Ix (0 yI I = I Ixi I I IYI I for all decomposable 
elements of X (0 Y, it is called a crossnorm. Such norms (and operator norms, in 
particular) are of special interest. The prime example is the absolute value norm 
on the complex numbers. 

Now let x* E X*, y* E Y*, then x* 03 y* & X* (0 Y* but may also be interpreted 
as a linear functional on X (0 Y which is characterized by 

(8) (x* (0 y*)(x ( Y) = x*(x)y*(y). 

Let E* = { e*, * , e* } and F* = { f* , f*n } be dual bases for E and F, respectively, 
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sothat e;(ej) 
= 6 i ,1 i,j< mand f *(f 1) = 

,k1 
< k, I< n. Then,I e* (0f: 

1 < ] ? m, I < k < n} is a basis for X* 0 Y*. But this is also the dual of the basis 
{ e; fk} for X (0) Y for, by (8), 

(e? ( f *)(e i () fJ) = e'4(eX)fk(f1) = biijkl 

Thus, functionals of the form x* 0 y* span (X 0g) Y)* which may therefore be 
identified with X* ? Y* and, without ambiguity, x* (0 y* may represent either 
the tensor product of functionals x* & X* and y* C- Y*, or a decomposable element 
of X* (0 Y*. 

If z* = (, e*. 0y* ? X* 0 Y* and z = Ei ei (g y, is a typical member of 
X (0 Y, we may write 

lz*II = sup il = sup -EeIz i()yil = sup I A 

,yd 
I 

If X, Y, U, V are linear spaces and A, B are linear operators A: X -- U and B: Y- > V, 
then the tensor product A 0 B may be defined as a linear operator from X (0) Y 
into U 0 V by 

(A 
? 

B) ei y = i (Ae;) 0 (Byi). 

LEMMA. If U, V, X, Y are normed linear spaces, A: X -? U and B: Y -> V are 
linear operators, and if the norms on X 0 Y and U (0 V are crossnorms, 
then IiA O Bil _ IjAil iiBii. 

Proof. Let D be the set of nonzero decomposable elements of X (0 Y and note 
first that, if x 0 y & D, 

I I(A O B)(x O y)I I = I |(Ax) 0 (By)I I = I I AXl I I IByl I, 

since the norm on U 0 V is also a crossnorm. Then, since the norm on X (0 Y is 
also a crossnorm, 

(I IA 0 B I I = SUP I I ( A ? B)vI I > sup I (A 0 B)vI I 
,eX?&Y Hllvl vED llvii 

sup ~~ IA IIBIA!: 
=xOC0D I IX I IYllII 

In the case that U = V = C, we deduce that, if the norm on X 0 Y is a cross- 
norm, then Ix* i y*0 _ Iix*" ii IY yii. Schatten [4] demonstrates a class of cross- 
norms on X (0 Y for which the strict inequality generally obtains in the dual spaces. 
We shall show how the concept of "absolute" norms can be used in this situation 
to obtain equality for the functionals of the dual spaces and, also, for the case U = X, 
V = Y. 

We shall say that a norm on (a) X, or (b) X (0 Y is E-absolute if 

(a) Ii I = Ivil, i = 1, 2, . .* , m, implies IlLE 4,ejIi = H!Z 'qjej I, or 
(b) ilyill = ljaill, i = 1, 2, -, m, and yi, ai & Y imply If, ei 0 yili 

= liZ ei (0 a,j I, respectively. 
Since the spaces X and X (0 Y are isomorphic to direct sums 

(9) Ce, (3 * * * ( Cem and (el (0 Y) G ... * * (em0 Y), 
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respectively, we may deduce from Theorem 1 corresponding monotonicity properties 
for E-absolute norms. We note also that, by Theorem 3, once the basis E is fixed, 
E-absolute norms (in either sense) correspond to absolute norms on C". 

LEMMA. Let X be a normed linear space, let the norm on X be E-absolute and let 
E* = e*, e* .., e* } C X* be the coordinate functions determined by E. Then, the 
(induced) norm on X* is E*-absolute. 

Proof. Using the first of the decompositions (9), the lemma is a consequence 
of Theorem 4. 

THEOREM 5. Let X, Y be normed linear spaces with a basis E = e1, * , em I 
for X and let a crossnorm be defined on X (0 Y. If the norm on X 0 Y is E-absolute, 
then 

(a) the norm on X is E-absolute, 
(b) iiZee0(yill = iZElylleli,and 
(c) IIx* (D y*II = IIx*II ILy*Ii. That is, the norm on X* 0 Y* is also a crossnorm. 
Proo,f. (a) Choose v E Y such that lvII = 1. Then, if x E X, we have 

1ix&S)vII = llxll llvll = ilxll. 
Let x = E, i,ej; then lxilI = lix (0 vilI = I E e, (0 j|v|I and, since the norm on 
X 0 Y is E-absolute, 

llxll = IIZ: e, 0 Ilj vl = I1 lj ei O)vIi = l [,Aj eill. O 
(b) We again choose v C Y with IlvlI = 1 and, since the norm on X (g Y is 

absolute, we have 

rEfes0y,II iiZej0 iiy,ilvli = |IZ IIyjIIeje vII = e liE IIy;ileill. E 
(c) If x* = C e E X* then, by the lemma, the norm on X* is E*-absolute 

and, by part (b), 

Iix* y*II = I I| e* 02) (y*II = I I tiy*I Ie*IIe. 
Thus, using part (a), 

IIX*0y*II = IIY*II IIZ ijie*kji = IIY*11 IEZ je*ijj = IIx*iI IIY*II. 
These results suggest that the formula of part (b) may provide a useful class 

of norms of X 0 Y. We have 
THEOREM 6. Let X, Y be normed linear spaces, let E = { e1, *, em} be a basis 

for X and let the norm on X be E-absolute. Then, the function I I I 1i defined on X (0) Y by 

iiEe0 YjIIj = III: llyiIeill 
is a norm on X 0 Y which is E-absolute and is a crossnorm. 

Proof. Using the isomorphisms (9), we may identify X with Cn and X (0 Y with 
Ym (= Y E * *D Y) as follows: 

m m 
Ejej 4 * ,m) and Ees 2) yi -(Y1, * I* Ym). 

By Theorem 3, the E-absolute norm on X determines an underlying absolute norm h 
on Cn for which iiZii yv Ileill = h(Jly,1i, .I.lymll) and, in its turn, h determines 
an absolute norm on X (0 Y for which 
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II eei ( yil = h(lylyil, IIY 1 I) = II Y ll.I eill. 
But this norm is just the function I I - I 1 and so we obtain the first part of the theorem. 
To see that the resulting norm is a crossnorm, let y E Y and x = I fjej E X. Then, 

lix ylll y 1 = Eei & tiylll = 11 II ijyj eill = 11? Iil ellI llylI lix IIlyII, 
and the theorem is proved. El 

We note that, by Theorem 5, the norm induced in X* (0) Y* by fl @ is also a 
crossnorm. 

COROLLARY. Let X, Y be normed linear spaces. Let F = fl, * , fn} be a basis 
for Y and let the norm on Y be F-absolute. Then, the function I I * 12 defined on X 0) Y by 

Xk?fk 2 lXk II fk 

defines a norm on X 0 Y which is F-absolute and is a crossnorm. 
The proof is the obvious parallel of that for Theorem 6. 

5. Norms of Tensor Products of Operators. We now consider the definition of 
operator norms. If X is a linear space and L(X) is the linear space of bounded linear 
operators from X into itself, then we require the usual vector norm axioms for a 
norm on L(X) together with the submultiplicative property: I ABIJ < IA II I IBI I for 
all A, B E L(X). Then, L(X) is a normed algebra. 

If X, Y are finite-dimensional linear spaces, we now are interested in the tensor 
product L(X) (0 L(Y). This is not only a linear space; it is an algebra in which 

(10) (Al 0 Bl)(A20 B2)= A1A20&B1B2 

holds for all A1, A2 E L(X) and B,, B2 C L(Y). As such, L(X) (g L(Y) may be iden- 
tified with the algebra L(X 0 Y) in such a way that the element A (0 B of L(X) (0 L(Y) 
is identified with the "tensor product" A (0 B of the operators A, B. 

If L(X), L(Y) are finite-dimensional normed algebras, we are to use the norms 
on L(X), L(Y) to define a norm on L(X 0 Y) which is submultiplicative and will 
be a crossnorm. That is, if M, N E L(X 0 Y), then IIMNII < JIMII IINII and if 
A C L(X), B C L(Y), IIA = Bll- IJAII JIBIJ. 

The first suggestion is to apply Theorem 6 directly after picking out a basis for 
L(X). The results of Theorem 6 then guarantee all the required properties of the 
norm on L(X (0 Y) with the exception of the submultiplicative property. That is, 
L(X (0 Y) need not be a normed algebra. In the following case, we have the sub- 
multiplicative property. 

Let X be the space CmXm of m X m complex matrices and let E,i E CmXm be the 
matrix with a one in the i, j position and zeros elsewhere. Then, E = Ei,: 1 i, 
j < m is a basis for CmXm. Our result applies to m X m matrices whose elements 
belong to a normed linear algebra, an algebra of bounded linear operators, for 
example. 

THEOREM 7. Let Y be a normed linear algebra and suppose a norm is given on CmXm 

which is submultiplicative. If B C CmXm 0() Ylet B = - . jim E,i (0 Bii and suppose 
further that the norm on Cmxm is E-absolute. Then, the function II j I defined 
on CmXm 0 Y by 
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|IBII = E IIBiIlIE; 

is a submultiplicative norm and is a crossnorm. 
Proof. As noted above, we have only to prove the submultiplicative property. 

Let A, B EC CmXm 0 Y with 

A =EEij Aii, B Z E E, 0B,i. 

Then, since Ej,E i = 6klE1i, we obtain from (10) and the usual matrix multiplication 

AB = (1 Eik 0 Aik)(1 Eli 0 Bl) = E (Eij 0 AikBk3). 

and 

II ABII1 3 Z AikBkj EiiF 

Now, the norm on Cm,m is monotonic (with respect to E) and the norm on Y is 
submultiplicative, so 

I IABI 11 < ||E (E IAikll IIlBkill Ei, 

C E AikijlBEikj) Bli EEs) 

= ||(X IIAikIl Eik IIBljII El)i 

But then the norm on Cm>,,, is submultiplicative so that 

IIABIt1 < |E tIAikil Ek| IIBtRIt Eli I=AIt, 11BIJ1. 0 

We remark that, with the norm of this theorem, IjAIj is equated to the norm 
(in Cm,m) of the nonnegative matrix [I IA i II] which, by the classical Perron-Frobenius 
theorem, has a maximum nonnegative eigenvalue X. If Y is an algebra of bounded 
linear operators so that Ai, E L(S) for some linear space S, then A E L(S') and 
the proof of a theorem of Ostrowski (Theorem 4 of [3]) can be used to show that 
the eigenvalues of A (if any) cannot exceed X in absolute value. 

We now turn our attention to the formulation of operator (bound) norms in the 
usual -way from the norms on the underlying spaces. Thus, if A: X -+ X, ItAlI I 
sup.( x r IlAxilll/lxll1. 

We note first that if A: X -* X and B: Y -* Y are linear operators and if the norm 
on X (0 Y is a crossnorm, then by the first lemma of ?4, I[A (0 Bl ? IA!J,IIBII.. 
Once again, we are interested in those norms for which equality obtains. 

Consider the norms fIII 1 and II-I12 defined on X (0 Y in Theorem 6 and 
its Corollary. We shall use the same subscripts for the norm defined on L(X (0 Y) 
by these vector norms. We denote the identity mappings on X and Y by Ih, Iy re- 
spectively. 

LEMMA. (i) Let the norm on X be E-absolute and B E L(Y), then 

I 0I IX) B! 11 = I IBI IL 
(ii) Let the norm on Y be F-absolulte and A C L(X), then 
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[[A ( IY112 = IJAII. 

Proof. We shall only prove (i). Part (ii) is proved by a similar argument. Writing 
z = ei 0 y, for a typical element of X (? Y, 

LIsup 11 E a (D yI= sup I I E II Ie,: 

and using the monotonic property of the norm on X, we obtain IXII (0) BIjj < ?jBIj. 
However, we have noted that, for a crossnorm on X (? Y, I [Ix 0 Bj ? IxI jBI = 

B I 1. Part (i) is obtained. a-I 
THEOREM 8. Let X, Y be finite-dimensional normed linear spaces with bases E 

and F, respectively. If the norms on X, Y are E-absolute and F-absolute, respectively, 
and if the vector norms I 1 11' and I I 112 of Theorem 6 coincide, then I [A (0) BI I = I [A I I I IBI I 
for the corresponding indluced norms. 

Proof. We observe that A 0 B = (A 0 I,)(Ix 0 B) and, since an induced 
norm is necessarily submultiplicative, 

I1IA &g B II < 1A &g Iyl 1Ix (D Bl 

The lemma then gives I[A 0 BII < IJAII jIBII and, since we have already proved 
I[A 0 BIj ? t All IiBIl, the theorem is proved. El 

We note that it is always the case that lix 0 yjljI = lix 0 Yl12, since both norms 
are crossnorms. In the theorem, we suppose this true for all elements of X 0 Y 
and not just the decomposable elements. 

6. Application to Vectors and Matrices. Let X, Y be linear spaces with E= 

Ie1, * , em} a basis for Xand F = {f,, * * *, fn} a basis for Y. Then, linear operators 
A: X X and B: Y -* Y have matrix representations AM & CmXm- with respect to E, 
and BM C Cfl,,7 with respect to F. We may choose as a basis for X 0 Y the vectors 

el 
Q3 

fl, ei (g ) h2, el (@, fn) e2 2 fl, e2 (o fn, e,, (i) fi, e*f *x f lr i) f 
in this order, and it is easily seen that the matrix representation of A 0 B with respect 
to this basis is the familiar Kronecker, or direct product of the matrices AM, BM, 

written AM (0 BA. 
The unit vectors ek in the space C' of column vectors have a one in the kth place 

and zeros elsewhere. In the case X = C', Y = C', we may choose bases E and F 
of unit vectors and then the above basis for C, 0g) C' = C' is also of unit vectors. 
The norm of Cn' is E-absolute if, for all pairs x, y C C' with Ix,j = jyij for j = 1, 
2, * , m, we have I Ixl I = I jyj j. This now coincides with an absolute vector norm 
in the usual matrix theoretic sense (Bauer, et al. [1]). 

Let a E C' 0i C'. Then, there are complex numbers Xi k for which 

a = Z Z Xik(e, 0 fk) 

and we may also write 

ne ~~~~~~n 
a E eX Y(i) = Z x k) tIck 

k=I 
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where 

= xil = Xi2 , (k) = X Xke = X2k 

Xin] ~~~~LX.kJ 
In the norms of Theorem 6 and its Corollary, we see that Ila/ll and Ilail2 are the 

X-norm (norm in C.) and Y-norm (norm in C'), respectively, of 

I IY(2)j I 
- lr Ix()lII 

II 1 and i , 

|It IY`m) I 
l 

I lx(n) HII 
In particular, if d = x (0 y is a decomposable member of C,,' 0 C', then lldll = 

//dJ12 = |I xl/I Ifly, since both norms on C.' 0$ Ct are crossnorms (Theorem 6). 
As an application of Theorem 7, we take for the space Y the n X n complex 

matrices with an appropriate norm and the operator A is then an mn X mn partitioned 
matrix. The norm on mn X mn matrices is then constructed from the norms of the 
n X n blocks as indicated and, provided the norm on CmXm depends only on the 
absolute values of matrix elements, the resulting norm on CmnXmn is a crossnorm. 
A very special example is the case of a p-norm (1 < p < 2) used in both spaces Cmxm, 

C.Xn which yields the same p-norm in CmnX,nn. That is, for a matrix A E Cmxm, for 
example, 

/A/f l/aiip' 

It is a trivial matter to check the crossnorm property directly in this case. 
To illustrate Theorem 8, suppose that C,', C' have the same p-norm imposed 

on them. Since these are merely vector norms, we may have 1 < p c o in this case. 
Then, / I * I 1/ and I I * 112 coincide and yield the same p-norm on Cm - Cm' (g C.. The 
operator norms in Theorem 8 are then those induced by the vector p-norms and are 
again crossnorms. 

It is noteworthy that, for these norms and for 1 < p < 2, Theorem 7 is not in- 
cluded in Theorem 6. To see this, we have only to show that a matrix norm induped 
by an absolute vector norm is not necessarily absolute (with respect to the basis 
Ei i } in Crnxm,). Consider the case p 2 (the euclidean vector norm) and the matrices 

A = 1 i B -n. 
Li i-I 1 

It is well known that the matrix norm induced by this vector norm is the spectral 
norm and, for any matrix A, is given by the square root of the largest eigenvalue 
of A*A (star denotes a conjugate transpose). The norms of matrices A and B with 
respect to an Eii}-absolute norm are obviously equal. However, their spectral 
norms are 2 and ,/2, respectively. 
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This case may be contrasted with the cases of p = 1 and p = o for the vector 
norm. It is well known that the induced matrix norms are IEi, -absolute in these 
two cases. 
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